Special Relativity

3 years ago by in Featured, Natural Science, Natural Science

Special relativity (SR, also known as the special theory of relativity or STR) is the physical theory of measurement in an inertial frame of reference proposed in 1905 by Albert Einstein in the paper “On the Electrodynamics of Moving Bodies”.
Galileo Galilei had already postulated that all uniform motion is relative, and that there is no absolute and well-defined state of rest (no privileged reference frames), a principle now called Galileo’s principle of relativity. Einstein extended this principle so that it accounted for the constant speed of light, a phenomenon that had been recently observed in the Michelson–Morley experiment. He also postulated that it holds for all the laws of physics, including both the laws of mechanics and of electrodynamics, whatever they may be.
This theory has a wide range of consequences which have been experimentally verified, including counter-intuitive ones such as length contraction, time dilation and relativity of simultaneity. It has replaced the classical notion of invariant time interval for two events with the notion of invariant space-time interval. Combined with other laws of physics, the two postulates of special relativity predict the equivalence of mass and energy, as expressed in the mass–energy equivalence formula E = mc2, where c is the speed of light in vacuum. The predictions of special relativity agree well with Newtonian mechanics in their common realm of applicability, specifically in experiments in which all velocities are small compared with the speed of light. Special relativity reveals that c is not just the velocity of a certain phenomenon—namely the propagation of electromagnetic radiation (light)—but rather a fundamental feature of the way space and time are unified as spacetime. One of the consequences of the theory is that it is impossible for any particle that has rest mass to be accelerated to the speed of light.

The theory was originally termed “special” because it applied the principle of relativity only to the special case of inertial reference frames, i.e. frames of reference in uniform relative motion with respect to each other. Einstein developed general relativity to apply the principle in the more general case, that is, to any frame so as to handle general coordinate transformations, and that theory includes the effects of gravity.
The term is currently used more generally to refer to any case in which gravitation is not significant. General relativity is the generalization of special relativity to include gravitation. In general relativity, gravity is described using noneuclidean geometry, so that gravitational effects are represented by curvature of spacetime; special relativity is restricted to flat spacetime. Just as the curvature of the earth’s surface is not noticeable in everyday life, the curvature of spacetime can be neglected on small scales, so that locally, special relativity is a valid approximation to general relativity. The presence of gravity becomes undetectable in a sufficiently small, free-falling laboratory.




Einstein discerned two fundamental propositions that seemed to be the most assured, regardless of the exact validity of the (then) known laws of either mechanics or electrodynamics. These propositions were the constancy of the speed of light and the independence of physical laws (especially the constancy of the speed of light) from the choice of inertial system. In his initial presentation of special relativity in 1905 he expressed these postulates as:

*The Principle of Relativity – The laws by which the states of physical systems undergo change are not affected, whether these changes of state be referred to the one or the other of two systems in uniform translatory motion relative to each other.

*The Principle of Invariant Light Speed – “… light is always propagated in empty space with a definite velocity [speed] c which is independent of the state of motion of the emitting body.” That is, light in vacuum propagates with the speed c (a fixed constant, independent of direction) in at least one system of inertial coordinates (the “stationary system”), regardless of the state of motion of the light source.

The derivation of special relativity depends not only on these two explicit postulates, but also on several tacit assumptions (made in almost all theories of physics), including the isotropy and homogeneity of space and the independence of measuring rods and clocks from their past history.
Following Einstein’s original presentation of special relativity in 1905, many different sets of postulates have been proposed in various alternative derivations. However, the most common set of postulates remains those employed by Einstein in his original paper. A more mathematical statement of the Principle of Relativity made later by Einstein, which introduces the concept of simplicity not mentioned above is:
Special principle of relativity: If a system of coordinates K is chosen so that, in relation to it, physical laws hold good in their simplest form, the same laws hold good in relation to any other system of coordinates K’ moving in uniform translation relatively to K.
Henri Poincaré provided the mathematical framework for relativity theory by proving that Lorentz transformations are a subset of his Poincaré group of symmetry transformations. Einstein later derived these transformations from his axioms.
Many of Einstein’s papers present derivations of the Lorentz transformation based upon these two principles.
Einstein consistently based the derivation of Lorentz invariance (the essential core of special relativity) on just the two basic principles of relativity and light-speed invariance. He wrote:
The insight fundamental for the special theory of relativity is this: The assumptions relativity and light speed invariance are compatible if relations of a new type (“Lorentz transformation”) are postulated for the conversion of coordinates and times of events… The universal principle of the special theory of relativity is contained in the postulate: The laws of physics are invariant with respect to Lorentz transformations (for the transition from one inertial system to any other arbitrarily chosen inertial system). This is a restricting principle for natural laws…
Thus many modern treatments of special relativity base it on the single postulate of universal Lorentz covariance, or, equivalently, on the single postulate of Minkowski spacetime.

From the principle of relativity alone without assuming the constancy of the speed of light (i.e. using the isotropy of space and the symmetry implied by the principle of special relativity) one can show that the space-time transformations between inertial frames are either Euclidean, Galilean, or Lorentzian. In the Lorentzian case, one can then obtain relativistic interval conservation and a certain finite limiting speed. Experiments suggest that this speed is the speed of light in vacuum.
The constancy of the speed of light was motivated by Maxwell’s theory of electromagnetism and the lack of evidence for the luminiferous ether. There is conflicting evidence on the extent to which Einstein was influenced by the null result of the Michelson–Morley experiment. In any case, the null result of the Michelson–Morley experiment helped the notion of the constancy of the speed of light gain widespread and rapid acceptance.

Palya diren

The author didnt add any Information to his profile yet

  • Published: 45 posts